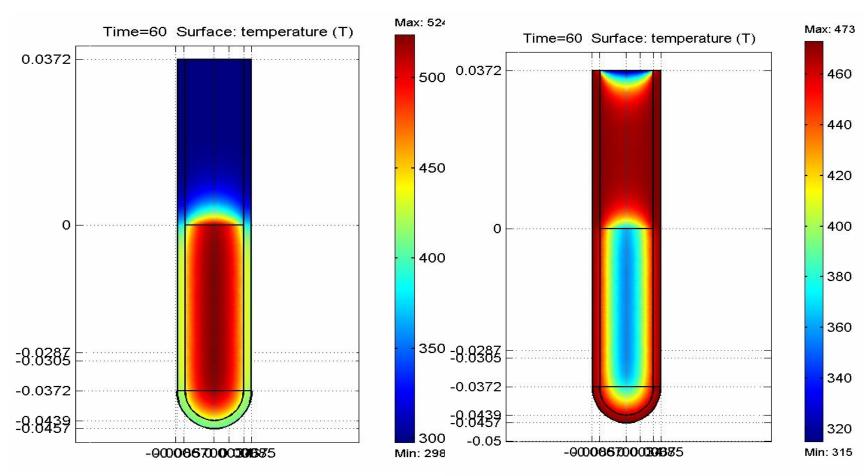
Microwave Assisted Organic Synthesis Where do we go from here?

Steve Jordan

Escalating costs of drug discovery

\$802m to bring a drug to market (Tufts Centre, 2001)


- 2.5 fold increase over the last decade!
- Costs largely associated with increasing clinical costs
- R&D expenditure 'v' marketable drugs
- False screening results
- Time for technology to realise its full potential!!
 Biotage
 Hardware & informatics

Evolution of Microwave Chemistry

1946	Microwave radiation was discovered as method of heating
1947	First commercial domestic microwave oven
1978	First microwave lab instrument developed to analyze moisture in solids
1980-82	Microwave radiation developed to dry organic materials
1983-85	Microwave radiation was used for chemical analysis processes such as ashing, digestion and extraction
1986	Gedye R. (Laurentian Univ. Canada); Majetich, G. (Univ. Georgia; USA) & Giguere, R. (Mercer Univ; USA) published papers relating to microwave radiation in chemical synthesis
2000	Introduction of the first commercial single-mode microwave system for high throughput organic synthesis
2005	Over 2000 publications on MAOS
2006-2010	????

Microwave vs Conventional Heating

Microwave Heating

Advantages of Microwave Assisted Synthesis

- Shorter reaction times
 - Rapid testing of creative ideas
 - Increased productivity
 - Higher yields, improved purity
- Expanded reaction diversity
 - Some difficult reactions made possible
- Less reagents and solvents
- Less reactive reagents
- Reproducible results
- Scalable conditions

Hydantoin Synthesis

Microwave Heating: 4 min; **90%** yield Conventional Heating: 48 h; **54%** yield

Epoxide Ring Opening

Microwave Heating: 7 min; 93% yield Conventional Heating: 10 days; 13% yield

Unusual Findings!

- Reactions conventionally done in ice-baths (0 °C)
- Reactions and substrates with perceived sensitivity to "heat"

Can be successful via microwave "flash" high temperature heating!

Preparation of Grignard reagent

Conventionally

- 0°C, hours
- Et₂O
- Inert atmosphere

Microwaves

- 60°C, 10min
- THF
- Normal atmosphere

Avoids the inconvenience of purging N₂ and ice baths.

Grignard Reaction of Aryl Chlorides

Ar—X
$$\xrightarrow{\text{Mg turnings / I}_2}$$
 Ar—MgX $\xrightarrow{\text{PhCHO}}$ $\xrightarrow{\text{H}^+ / \text{H}_2\text{O}}$ Ar $\xrightarrow{\text{THF}}$ $\xrightarrow{\text{100-170 °C / 1 hr}}$ Ar—MgX $\xrightarrow{\text{89 %}}$ $\xrightarrow{\text{51 - 99\%}}$ (16 examples)

Carbohydrate Chemistry

Microwave: 1 min, 190°C, 88 %

Microwave: 3 min, 150°C, 91 %

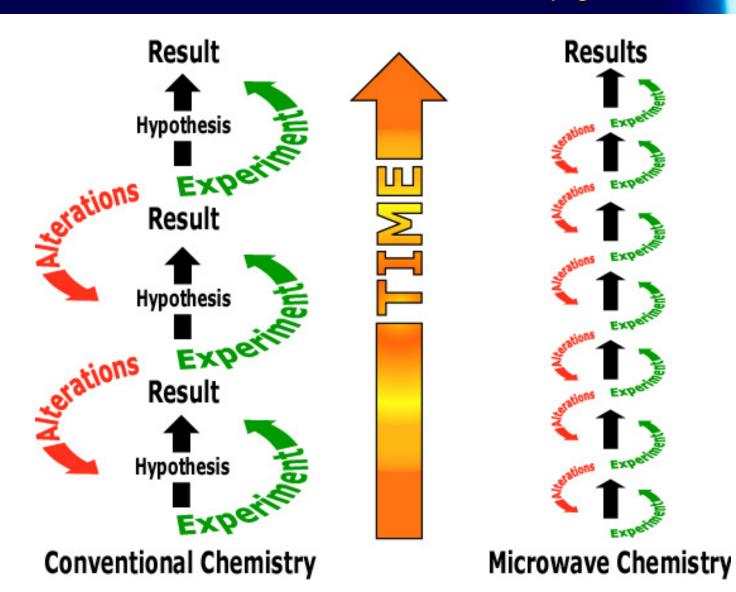
One-step, three-component synthesis of Imidazo[1,2-a] annulated Pyridine

$$\begin{array}{c|c} & & & \\ &$$

Safety. Use of Perchloric acid as catalyst

1. Optimized on Emrys™ Liberator: **70%** yield

2. Directly scaled up 30 X: **68 %** yield (100% purity)


What slows down drug discovery?

- 1. Target and Synthesis Design
- 2. Reaction
- 3. Work-up usually extraction & evaporation
- 4. Purification usually chromatography
- 5. Spectral Analysis Registration

Bottlenecks (3) and (4) become even greater with microwave chemistry

Reduce cycle-time Fail Fast – Fail Cheaply

Reagents for Important Reaction Families

- Reductive Amination
 - 30% of drugs in the Comprehensive Medicinal Chemistry (CMC) database are tertiary amines¹
- Common Reagents for Amide Synthesis
 - 28% of compounds in the CMC database are carboxamides¹
- Oxidizing agents
- Palladium Catalyst & Scavenger
- Acids and Bases

Polymer Types

Resin	Advantages	Limitations
Polystyrene 1 - 2 % cross linked (PS-)	Swell in organic solventsHigh loading	Incompatible with water, alcohols
Macroporous Polystyrene (MP-)	Compatible with all solventsLow swellingFaster washing and drying	Lower loading

Biotage Polymeric Reagents

Bound Reagent	Solution Analog	Application	
PS-TsCl	p-toluenesulfonyl chloride	Catch and Release	
MP-TsOH	p-toluenesulfonic acid	Catch and Release	
PS-DIEA	Hindered tertiary amine	Amine base	
PS-NMM	N-methylmorpholine	Non-benzylic amine base	
PS-TBD	TBD	Strong Base	
PS-DMAP	DMAP	Catalyst, Catch and Release	
MP-Carbonate	Ammonium carbonate	Base, Catch and Release	
MP-Borohydride	Sodium borohydride	Reducing agent	
MP-Cyanoborohydride	Sodium cyanoborohydride	Reductive amination	
MP-Triacetoxyborohydride	Sodium triacetoxyborohydride	Reductive amination	
MP-TsO-TEMPO	TEMPO	Oxidation of alcohols to carbonyls	
PS-Carbodiimide	DCC	Coupling	
PS-HOBt(HL)	1-hydroxybenzotriazole	Active ester, amide synthesis	
PS-Triphenylphosphine	Triphenylphosphine	Mitsunobu/Wittig/halogenations	
PS-PPh ₃ -Pd	Triphenylphosphine Palladium (0)	Palladium Catalyst	

Functional Group Stability Study PS- and MP- resins

- The stability PS- and MP- based resins upon microwave heating studied
- Three most commonly used solvents were selected: DCM, THF, DMF
- Temperatures were selected to be higher than what would be used in an actual application
- Heating time was 5 and 15 min
- The resins were evaluated for:
 - ➤ Resin Capacity
 - ➤ Bead breaking/agglomeration
 - ➤ Volatile and non-volatile leachable decomposition products

Functional Group Stability Results for PS- and MP resins - SUMMARY

- PS- and MP- behaved similarly; PS- type swelled and occupied more volume
- In general the resins were stable to microwave heating and did not break or agglomerate
- No volatile or non-volatile leachable decomposition products was found over the range of solvents studied (DCM, THF and DMF)
- The capacities of the PS and MP-isocyanate and MP-triacetoxyborohydride resins was reduced by more than 70%

This does not mean that they cannot be used with microwave heating because (a) the reaction would most probably be performed at a lower temp/time

(b) the reaction rates maybe faster than the decomposition rates

Functional Group Stability Results for PS- and MP resins

No	Resin Type	Std Capacity mmol/g	Resin Capacity mmol/g	Resin Shape (% Broken)
1	MP-Triacetoxyborohydride	2	0.66	1.5
2	MP-Carbonate	2.8	2.88	0
3	MP-TsOH	3.3	3.4	0
4	PS-Carbodiimide	1.15	1.23	0
5	PS-HOBt	1	0.99	1
6	PS-DIEA	3.9	3.9	30
7	PS-PPh3Pd	pass	pass	0
8	PS-trisamine	4.5	3.86	0
9	PS-Benzaldehyde	1.2	1.11	0

Condition: 1 g / 20 mL THF / 135 °C / 5 min

Amide Formation

- 1) **PS-Carbodiimide** HOBt, NMP 100 °C, 5 min
- 2) SPE (Si-Carbonate, elute with MeOH) 5 min

- ➤ HOBt scavenged via Si-carbonate SPE
- ➤ Both synthesis and purification takes < 15 min
- 6 different amines were used

Solid Supported Reagents Oxadiazole synthesis

[A] PS-Carbodiimide (3 equiv); HOBt (1 equiv); DIEA (3 equiv); CH₃CN 130 °C / 30 min (83% yield)

Conventional Heating:

Wang, Y.; Miller, R.L.; Sauer, D. R. Djuric, S. W.; Org. Lett. 2005, 7(5), 925-928

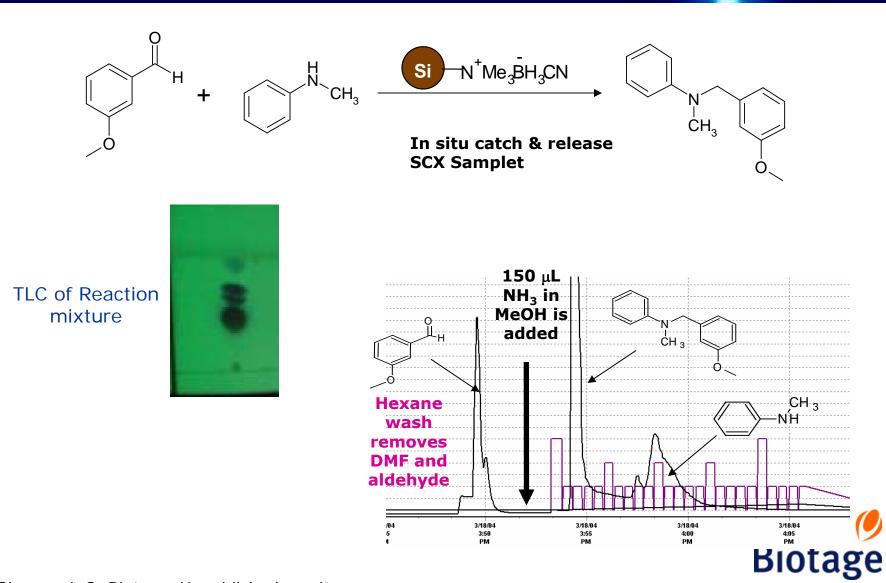
Solid Supported Triphenylphosphine One-pot Wittig olefination

Solid phase supported reagent. Heterogeneous solution

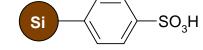
- 1. Developed & optimized on Emrys™ Liberator
- 2. Scaled up 30 times in Advancer; 92% yield (95% purity)

COMBINING

- Microwave Assisted Organic Synthesis (MAOS)
- Solid supported reagents
- Automated Flash purification



- ❖Shorten "compound production" time
- Increase product purity
- Increase productivity


Simplified Workup & Purification

"Catch and Release" purification of Tertiary Amines

Simplified Workup & Purification Catch/Release + Flash Technique

Reaction Mixture (in DMF)

Drivers for change---

- HTC/HTS has put increased pressure down stream -----Process chemistry
- More compounds entering PRD ----need to respond quickly
- Many chemical routes now using MW technology
- Need to fail early----fail cheaply
- In the next 5 years many compounds come off patent
- A large number of API vendors now off-shore
 - 700 vs 3000

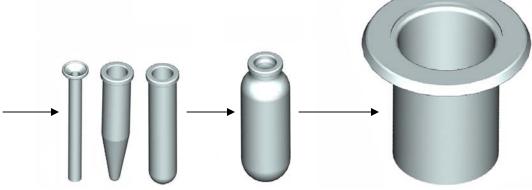
Fluoxetine PROZACTM

	Microwave Assisted Synthesis	Conventional Synthesis	
Step 1	100 °C; 2 min 20 sec	-25 °C; 7 h ¹	
Step 2	120 °C; 5 min	23 °C; 18 h	
Step 3	150 °C; 5 min	130 °C; 3 h	

Overall Yield 53 % 51 % Total Reaction Time 12 min 20 sec 28 h

What can we expect to see---

- More process chemistry done earlier and faster. Early scale-up group (1-5kg)
- Increasing use of MW technology in scale-up
- More Flow chemistry----including MW/flow, Batch flow
- Use of solid support reagents, catalysts, scavengers in both the synthesis and purification
- New Polymer backbones
- Many new reagents/scavengers on Silica and Polymer supports
- API vendors / Pharma---looking towards MW technology in large scale production Biotage


MP-TMT – New Palladium Scavenger

Macroporous polystyrene-2,4,6-trimercaptotriazine

- Bound TMT ligand on macroporous resin
- Scavenges Pd(II) and Pd(0), ligated palladium
- Effective in aqueous and non-aqueous solutions
- Useful for compound polishing
- Reduces residual palladium to low ppm levels
 Biotage

Microwave Reaction Scale-up

Biotage™ Pathfinder

0.2-5 ml mg-g

Initiator EXP

-Eight EXP -Sixty EXP 20 mL 1-10g

Initiator EXP

Eight EXPSixty EXP

300 ml 10g-1kg

Advancer

SUMMARY

- MAOS is a versatile tool that speeds up the chemistry development process
- Adoption in to workflow simplifies and enhances the rate of discovery
- Allows access to reactions and conditions previously considered "impossible"
- Can be easily integrated with Solid Bonded Reagents and Automated Flash Chromatography eliminating the purification bottleneck

QUESTION TO YOU....????

- What is the top 5 troublesome reagents that you would like to see in bound form?
- What are your top 5 work-up/purification bottlenecks? (eg. solvents, byproducts, reagents etc..)

Please drop of your list before leaving with a Biotage personnel

THANK YOU!!!

