Metal Scavengers for the Process Industry

Steve Jordan Snr Director R&D Biotage

Overview

- Process Chemists in Pharma and CRO firms are increasing the number of precious group metal (PGM) catalyzed reactions and the scale of synthesis.
- The US and EU FDA require these catalysts be reduced to less than 5ppm. Homogeneous catalysts (soluble metal-organic complexes) are used at 100-1000 PPM. Even heterogeneous catalysts (metal on carbon) leach metals at these levels.
- Classic solutions (crystallization or activated carbon) have poor selectivity, i.e. have low yield of drug / high metal level.
- These applications require a highly selective, cost-effective scavenging process to reach the purity goals
- Biotage's strategy employs a toolbox of metal scavenger solutions

Why is it growing now?

"Why spend years trying to perfect a chemistry for a compound that may never make it to the market" has become the trend

- The pressure to take products to market faster has led pharma to move their pipeline into clinical trials faster and scale-up of early stage compounds is done with minimal modification to medchem synthetic routes.
- Catalysts have recently gained acceptance in manufacturing due to their 'Green' properties in atom economy and energy consumption vs stoichiometric reactions.

Metal Catalysis & Pharmaceutical metal imits

• Current acceptable limits:

	Concentration (ppm)		
Metal	Oral	Parenteral	
Pt, Pd, Ir, Rh, Ru, Os	5	0.5	
Mo, V, Ni, Cr	10	1	
Cu, Mn	15	1.5	
Zn, Fe	20	2	

• Permitted limits of metals in API, fine and specialty chemicals will continue to decline

• New technology required to meet this challenge

Traditional methods of metal removal from APIs

Method	Drawbacks
Activated Charcoal Adsorption	Significant loss of API
Crystallization	Reaction vessel contaminationFailure to remove metals to desired level
Extraction	API structure dependent Depreducibility
Distillation	• Reproducibility

Metal Scavengers ideal properties

- Selective
- Non-contaminating
- Efficient removal of metals to acceptable levels
- Reproducible

Scavenging Metals from APIs

Benefits of Bound Metal Scavengers

- Higher metal affinity low Kd(Pd) relative to API Kd(Pd)
- Fast kinetics at room temp enhanced by heating
- Diverse solid supports silica and polystyrene backbones
- Generic use in diverse conditions
- Minimal loss of API less / no non-specific binding
- Faster purification kinetic effects allowed
- Higher purity of final product no leachables
- Short development time faster method optimization

Scavenging metals from APIs

- API structural diversity
- Varied and multiple binding groups
- Diversity of metals and oxidation states
- Solvent polarity and pH of reaction

Typical usage of scavengers in the process industry

- Step 1: Screening of (~30) scavengers against metal removal problem; mg quantities are required.
- Step 2: Use chosen scavenger in first campaign; ~1 kg is required per reaction.
- Step 3: If first campaign successful, next campaigns will require multikilo quantities of scavengers (15 kg upwards)
- Step 4: If compound goes into production, larger scale will require larger quantities of scavenger

Current metal scavenger portfolio

	Catalyst & Solvent							
	Pd(OAc) ₂	Pd(OAc) ₂	(Ph3P)2PdCl2	Pd(PPh ₃) ₄	Ru(C ₄₃ H ₇₂ Cl ₂ P ₂) (Grubbs)	Rh(PPh3)3Cl	CuS0 ₄	C ₁₀ H ₁₄ NiO ₄
	CH3CN	DMF:THF (1:1)	DMF:THF (1:1)	DMF:THF:CH ₃ CN (1:2:1)	DMF:THF (1:1)	DMF:THF (1:1)	DMF	DMF
Media	% scavenged*							
Si-Thiol	100	100	94	100	43	66	99	54
Si-TsOH (SCX3)	100	100	92	100	49	71	97	85
Si-Propylsulfonic acid (SCX2)	100	95	0	100	50	80	100	81
Si-Triamine	100	100	100	100	96	29	100	92
Si-Trisamine	100	100	100	100	90	28	93	91
MP-TMT	100	100	100	100	82	41	0	74
MP-Trisamine	100	100	100	99	93	27	100	91
PS-Thiophenol	0ª	100	100	100	90	55	95	76
PS-Trisamine	Oª	100	100	100	95	18	100	94
PS-NH ₂	0ª	100	100	99	82	20	64	93
PS-TBD	Oa	100	100	100	70	44	85	56
PS-DEAM	0ª	100	55	0	31	32	100	47
PS-PPh3	0ª	100	100	98	84	41	97	3

* % Catalyst scavenged from 6mL of 1000ppm catalyst solution by 0.5g media when stirred for 2 h at room temperature a PS-based resins require swelling solvents for activity. No scavenging was observed in CH3CN, due to lack of swelling whereas 100% scavenging was observed in DMF-THF(1:1).

Products available in multikilo scale

- MP-TMT
- Si-Thiol
- SI-TMT
- A metal scavenging tool box with 8 scavengers available at multi-Kg scale is currently in development

MP-TMT – Palladium Scavenger

- Bound TMT ligand on macroporous resin
- Scavenges Pd(II) and Pd(0), ligated palladium
- Effective in aqueous and nonaqueous solutions
- Useful for compound polishing
- Reduces residual palladium to low ppm levels
- Has been used for other transition metal removal
- Available in multikilo quantities

Macroporous polystyrene-2,4,6-trimercaptotriazine

Metal Screening Studies: Bound Igands

MP-TMT was the best non-basic / uncharged bound ligand in the screens

Initial Work in optimizing a colourimetric metal screen. Catalyst Pd(Cl)2(PPh3)2 in DMF / THF (1:1)

Metal Screening Studies: Bound-TMT materials

MP-TMT or Bound-TMT resin was stirred with Pd(Cl)2(PPh3)2 in THF/DMF (50:50) (2mL / total 8 µmole / 852 ppm Pd) for 16 hours at RT, and residual Pd determined following this scavenging.

Metal Screening Studies: Bound-TMT materials

MP-TMT or Bound-TMT resin was stirred Pd(Cl)2(PPh3)2 in THF/DMF (50:50) (2mL / total 8 µmole / 852ppm Pd) for 16 hours at RT, and residual Pd determined following scavenging.

Under these conditions, for 100% scavenging, it was necessary to add ca16equiv of Bound-TMT, compared to only ca4.1equiv of MP-TMT.

MP-TMT Removal of Pd from a Pd(PPh₃)₄ catalyzed Suzuki reaction

ICP results from reaction mixture before and after treatment with MP-TMT

Ghassemi, S. ACS Fall 2007, Boston, MA

MP-TMT Removal of Pd from a (Ph₃P)₂PdCl₂ catalyzed Suzuki reaction

	Before	After
Pd conc.	200 ppm	1 ppm

ICP results from reaction mixture before and after treatment with MP-TMT

Ghassemi, S. ACS Fall 2007, Boston, MA

MP-TMT Removal of Copper from a Cul catalyzed Ullman type reaction

	Before	After
Cu conc.	824 ppm	2 ppm

ICP results from reaction mixture before and after treatment with MP-TMT

Ghassemi, S. ACS Fall 2007, Boston, MA

Merck metal scavenger screen results

Merck-Rahway screened 30-different scavengers for a palladium-catalyst removal process. Merck picked Biotage MP-TMT as the clear winner for this application

Figure 6. Selective removal of palladium from the process stream coming from workup of Suzuki–Miyaura biaryl coupling reaction. Adsorbent screening conducted at 50 wt % loading.

Alpha is the ratio of metal removed divided by the ratio of product lost. High Alpha is strongly preferred solution, with low levels of metal and high yield of product

Welch, C.; OPRD, 2005, 9, 198-205

ISOLUTE[®] Si-Thiol

- Typical capacity 1.3 mmol/g
- Ultrapure analytical grade silica backbone
- Chemically stable
- Reduces Pd, Ru and Rh residues to the lower ppm levels
- Available in multi-Kg quantities

Palladium scavenging using Si-Thiol

Pd scavenging efficiency was investigated using dichlorobis-(tetraphenylphosphine) Palladium (II) as the test analyte. UV activity was measured after 16h of exposure to various concentrations of Si-Thiol

ISOLUTE® SI-TMT

- Typical capacity 0.3 mmol/g
- Ultrapure analytical grade silica backbone
- Chemically stable
- Reduces Pd residues to the lower ppm levels
- Available in multi-Kg quantities

Si-TMT initial chemical application work

Si-TMT : Synthesis of Benzothiazoles

S.Rana, Unpublished Results, Biotage 2008,

Method as per: Heo, Y.; Song, Y.S.; Kim, B.T.; Heo, J. Tetrahedron Lett. 47 (2006), 3091-3094

Metal scavengers comparison: PdCl2(dppf)

Activity Trend 4 media with 8mM Dichlorobis Palladium II (dppf)

Metal scavengers comparison: Pd(OAc)2

Activity Trend 4 media with 24mM Palladium Acetate

How should I decide which backbone to use?

The choice of backbone depends on what best fits the workflow.

MP-polymers	Si-reagents
Do not swell	Do not swell
200-300 um particles	60 um particles
Wide range of solvents	Wide range of solvent
Low loading	Low loading
Ideal for batch mode	Ideal for filtration
More expensive	Less expensive

Summary: Biotage Metal Scavengers

- Biotage metal scavengers remove transition metals to levels approved by FDA guidelines prior to clinical trials
- Both silica and polymer based metal scavengers offered for both filtration and batch processing
- MP-TMT, Si-Thiol and Si-TMT available in multi-Kg qtys
 - At cost effective prices
 - Within a few weeks of order
- TSE certified (no animal / human origins)

Biotage strategy

- To offer a tool box of metal scavengers to the process, contract and large scale industries
- To be included in customer's screening:
 - Offer supporting documentation (i.e. TSE statement, leachables data)
 - To be capable of delivering multiKg quantities within reasonable timelines
 - Comprehensive technical assistance

Thank You for Your Attention!

2008-11-26