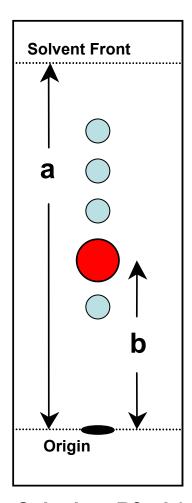


Sjaan Armentrout, Jack Liu and Peter Rahn Biotage Discovery Chemistry Group 1725 Discovery Drive Charlottesville, VA 22911



Abstract

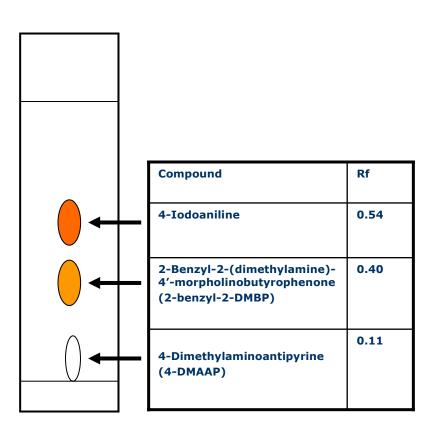
- Biotage SP1 and SP4 systems automatically produce appropriate optimized Flash gradient profiles from TLC data
- These automated gradient methods are applicable for a wide range of solvent systems including those containing acetonitrile or alcohols
- Examples of reductive amination products utilizing TLC data to produce successful Flash gradient purification separations are presented

TLC Data Gathering

- New Biotage Flash systems automatically utilize TLC data to generate optimized Flash purification conditions
- Eliminates need to optimize TLC separation
- Chemist empirically determines suitable solvent composition to separate target compound from nearest impurity

Calculate Rf = b/a
Identify Solvent and ratio X:Y

New Automated Biotage Flash Systems

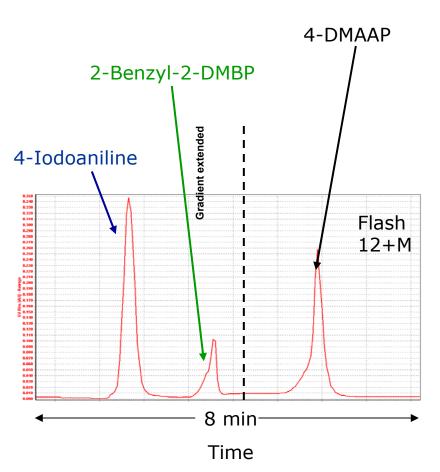


Chemist Inputs the following TLC Data

- Rf of selected compound
- Rf of additional compounds
 - If Rf of more than one compound is entered system determine sample load or cartridge size)
- Solvent identity and ratio
- Automatic Flash System Setup*
 - Identifies weaker solvent
 - Produces appropriate gradient profile including initial hold, gradient and final hold
 - System suggests altering solvent composition from TLC concentration if selected solvents exceed a specified solvent strength threshold

Automatic Optimization of Purification Conditions for Any Component In a Mixture

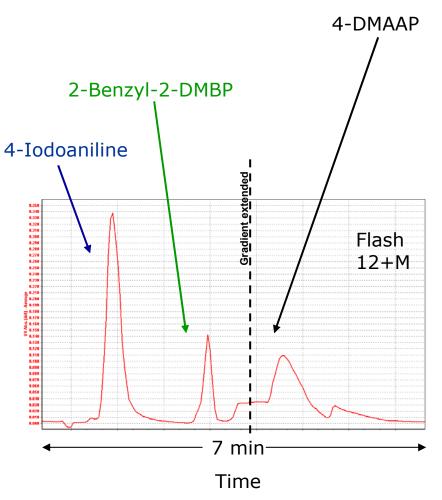
TLC Conditions


DCM:MeOH

98:2

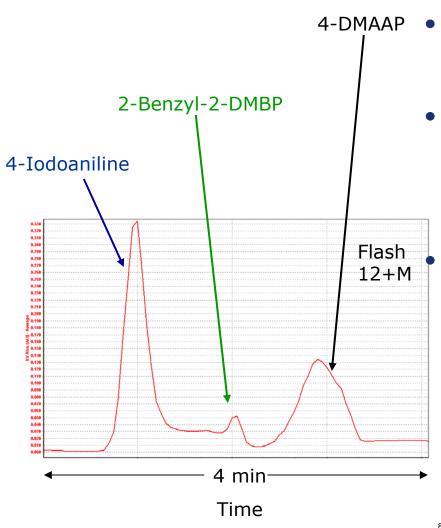
- Algorithm works for Non-Polar and Polar Solvents
 - MeOH was required to separate these polar compounds
 - If TLC solvents include polar solvents such as acetonitrile, methanol, ethanol, isopropanol etc. the system automatically notifies chemist to adjust the solvent mixture to an appropriate value
- Rf factors between 0.05 and 0.9 are suitable
 - Eliminates the need to optimize Rf between 0.15 and 0.3
- Automated Sp1 System optimizes gradient conditions to purify identified product
 - Includes initial, gradient and final hold conditions
 - Suggests adjustments in mobile phase composition
 - Suggests column load or column size if more than one Rf is entered

Optimized Flash Gradient Profile to Purify 4-Iodoaniline


- Rf of 4-Iodoaniline= 0.54 entered into SP1 system and DCM:MeOH solvent system identified and Flash 12+ cartridge specified
- Automatic gradient profile generated:
 - Initial conditions = 18 mL at 0% B
 - Linear gradient = 120 mL 0-46%B
 - Final conditions = 36 mL at 46% B

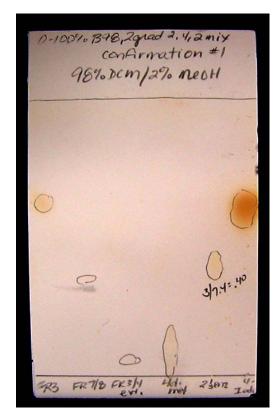
Resolves 4-Iodoaniline and 2-Benzyl-2-DMBP

Solvent strength wasn't sufficient to elute 4-DMAAP-required only 1 automatic extension (-----)


Optimized Flash Gradient Profile for 2-Benzyl-2-DMBP

- Rf=0.40 for 2-Benzyl-2-DMBP entered into SP1 system
- Resulting gradient:
 - Initial conditions = 18 mL at 0% B
 - Linear gradient = 120 mL 0-60%B
 - Final conditions = 36 mL at 60% B
- Achieved excellent resolution of first 4-Iodoaniline and 2-DMBP
- Solvent strength still not sufficient to elute 4-DMAAP and an automatic gradient extend was initiated (-----)

Optimized Flash Gradient Profile to Purify 4-DMAAP


- 4-DMAAP **Rf=0.11 for 4-DMAAP** (compound 3) entered into SP1 system
 - **Resulting automatic gradient** profile:
 - Initial conditions = 18 mL at 0% B
 - Linear gradient = 120 mL 0-89%B
 - Final conditions = 36 mL at 89% B

Good resolution of all three compounds, no gradient extension required

Even with this stronger solvent mixture all the polar compounds remained resolved

SP1 Flash Purification Results Using Automated Purification Conditions for Polar Compounds

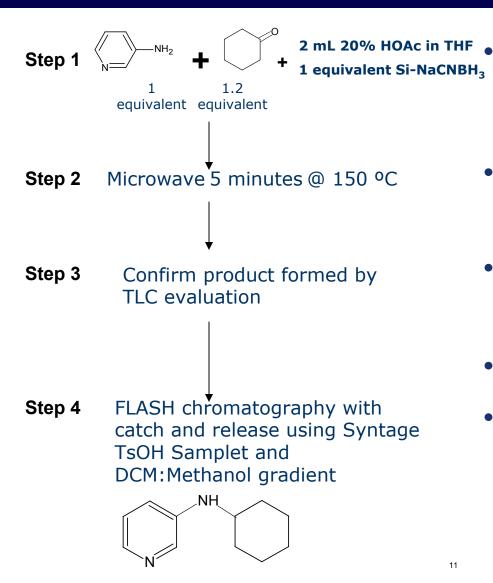
Fr 2/3 Fr 7/8 Fr 10/11 4-I DMPB DMAAP

TLC Conditions
DCM:MeOH 98:2

- TLC shows fraction analysis after Automated Flash Purification using DCM:MeOH
- Algorithm works for Rf factors between 0.05 and 0.9
- Automated Sp1 System optimizes gradient conditions to purify identified product
 - Includes initial, gradient and final hold conditions
 - Suggests adjustments in mobile phase composition
 - Suggests column load or column size if more than one Rf is entered
- MeOH was required to separate these polar compounds
 - System automatically notifies user to modify polar solvent ratio
- Examples using this patented technology for the purification of amination products in shown in the next section of this poster

Synthesis and Purification of Amination Products using Biotage Initiator™ Microwave Synthesis and **Biotage SP1™ Flash Purification Systems**

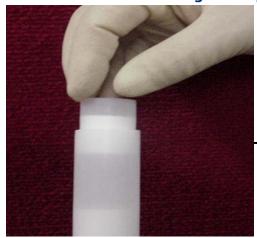
- Biotage Initiator™ 60 **Microwave System was** equipped with the following:
 - **Compact footprint**
 - **Touch screen control**
 - Four different vial sizes in any order or combination at any time without system modifications for greater flexibility and direct scale-up of milligrams to grams
 - 60-position sample bed
 - **Best-in-class safety**


The 2-5 mL reaction vials containing the solid supported reagent, solutions and enclosed magnet to stir reaction mixture during synthesis

- **Purifications performed** on the compact SP1 system using the new TLC to gradient algorithm
 - **Accommodates the** Biotage FLASH 12-40 cartridges without external stands
 - Solvent and waste monitoring
 - Variable dualwavelength detector
 - **Auto-continue** feature

Microwave Synthesis and Purification of **Reductive Amination Product**

- Starting amine and ketone materials placed in reaction vessel with 20% HOAc in THF as solvent and Syntage Cyanoborohydride reagent
- Reaction mixture heated and stirred in Initiator microwave at 150°C for 5 minutes
 - **Reaction mixture tested by TLC**
- **Reaction mixture solution** containing THF directly added to 12+M cartridge containing a **TsOH Samplet**
- From TLC input Rf data for compound of interest
- **Product automatically and** successfully purified on SP1 Flash system using catch and release technique



Syntage TsOH Samplet Catch and Release Procedure

Biotage Si 12+M cartridge containing TsOH Catch and Release Scavenger Samplet

Step 1

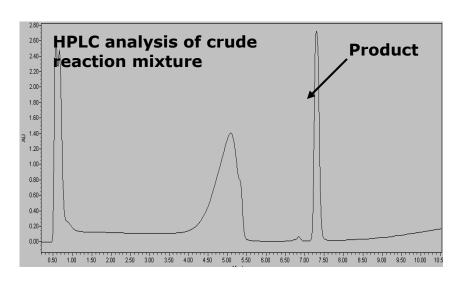
Add
reductive
amination
reaction
mixture in
THF to
Samplet/
Cartridge

Step 2

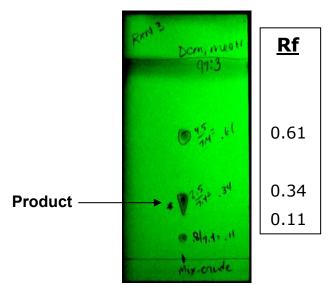
Capture product and wash out THF with DCM

Reaction product (amine) bound to TsOH Samplet

Step 3


Release reaction product and impurities from Syntage Samplet with 0.5 mL 2.0M NH₃ in MeOH

Step 4


Purify selected compounds with specified DCM:MeOH gradient

TLC and Purification Data for Reductive Amination Product with DCM and MeOH

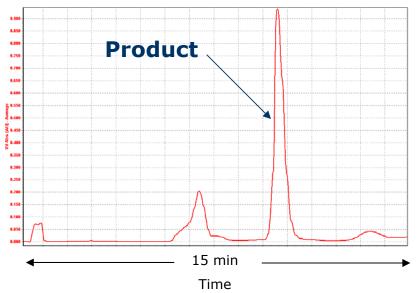
TLC analysis of crude reaction mixture

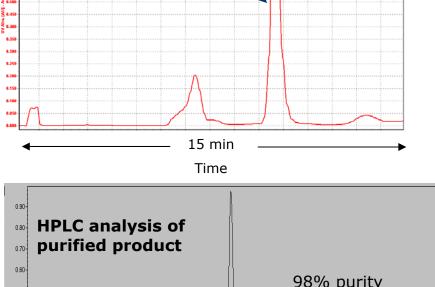
HPLC Conditions

Column: C₁₈ 5µm 4.6 x 50 mm

Mobile Phase: A. H₂O:ACN (95:5) + 0.1% TFA

B. ACN:H₂O (98:2) + 0.1% TFA


Gradient: 0-100% B in 8 min, hold 2 min


Flow Rate: 1.5 mL/min Detection: 254nm

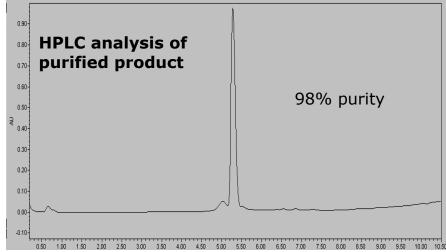
- TLC solvent system was DCM:MeOH 97:3
 - Product Rf 0.34
- Gradient profile automatically generated by Flash system
 - Solvent A: DCM
 - Solvent B: DCM:MeOH (94:6)
 - Initial hold for 18 mL at 0% B
 - 120 mL 0-66% B linear gradient
 - Final hold for 36 mL at 66% B

Reductive Amination Product Purification Results with DCM and MeQH

Purification with Biotage Flash SP1 system using Automated DCM/MeOH gradient

Flash conditions: Flash 12+M cartridge loaded with 110 mg crude

Solvent A: DCM


Solvent B: DCM:MeOH (94:6)

Initial hold for 18 mL at 0% B **Gradient:**

120 mL 0-66% B linear gradient

Final hold for 36 mL at 66% B

Total Purification Time 15 minutes

HPLC Conditions

Column: C8 4.6 x 50 mm

 $H_2O:ACN (95:5) + 0.1\% TFA$ Mobile Phase: A: Mobile Phase B: ACN:H,O (98:2) + 0.1% TFA

Gradient: 5-100% B in 8 minutes, hold 2 min

Flow Rate: 1.5 mL/min **Detection:** 254nm

Advantages of New Flash Automated Gradient Technique

- Accelerates Solvent System Selection
 - Eliminates guessing the solvent mixture that produces both an acceptable separation and a Rf within a narrow band
 - Eliminates need to perform multiple TLC separations
 - Technique applicable when Rf ranges from 0.05 to 0.9
 - New Algorithms applicable for all solvents
- Provides a quick, easy solution for alcohol containing gradients
 - Good for very polar compounds that require alcohol
 - System automatically adjusts conditions using algorithms when solvents exceed a predetermined solvent strength value with no user intervention
- Eliminates remixing solvents to elute different compounds
 - User optimizes separation of mixture components by inputting different Rf values
- Accelerates Clean-up and Purification
 - Biotage catch and release scavenger Samplets eliminate time-consuming clean-up of reaction mixture prior to purification
 - Catch and release technique ensures polar solvents do not cause co-elution or early breakthrough of desired compounds

