
 
 
 

M

 

 
 
 

 
 

 
 
 
 

Th
Metal S

N

Introd
Catalyti
due to r
contam
[5ppm 
polysty
potentia
(MP-TM

Figure 1
polystyre
irregular 

 
Results
Historica
However
there ha
scaveng

 

Lee Williams

he Use
Scaven
New A

B

uction 
ic metal me
reaction effi
ination in fi
typically] po
rene resin o
al for proces

MT) and func

) SEM images
ne, 50um – 10
shaped particl

s and discus
ally, measure
r, the techniq
as been a co
ing variables

s, Helen Lodder, 
Biotage GB Lim

e of Po
ngers 
pproa

A
G

Biotage GB Limited,

ediated react
iciency, atom
nal product
oses particu
or silica bou
ss improvm
ctionalized s

 of a. macropo
000um diamete
es, iinsoluble, 

sion  
ement of res
que is relativ
omparative sh
s.   

Rhys Jones, Stev
mited, Dyffryn Busin

olyme
 in Sca
ches t

A Deta
Geoff Davies, Ste
, Dyffryn Business P

tions are be
m economy
s/APIs are b

ular difficulti
nd metal sc
ent1.  We ill

silica (Si-TM

orous polystyre
er beads).  b. 
hydrophillic Si

idual metal i
vely expensiv
hortfall of da

 
 
 
 
 
 
 
 

ve Jordan, Richa
ness Park, Ystrad M

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

er and 
ale Up
to Tod
ailed S

 
eve Jordan and S
Park, Ystrad Mynach

 

ecoming mo
 and green 
becoming in
ies for down
cavengers h
lustrate the
T and Si-Th

ene resin (insol
Functionalized
-O-Si matrix).

in final produ
ve where in-h
ata relating t

rd Calverley, Mat
ynach, Mid Glamor

 Silica
p / Pro
days C
Study  

Sunil Rana* 
h, Mid Glamorgan, 

ore widespre
credentials.

ncreasingly s
nstream pro
as increased
 application

hiol) to meta

luble, cross-lin
 silicas (surfac
  

uct was achie
house facilitie
to systematic

tthew Cleeve & J
gan, CF82 7RJ, UK.

 Suppo
ocess C
hallen
 

CF82 7RJ, UK 

ead in indus
.  Target lim
stringent. A

ocessing.  Th
d in recent y
 of PS-DVB
al scavengin

ked spherical f
ce orientated ch

eved by ICP
es do not exi
c understand

Joanna Caulfield.
. 

 

orted 
Chemi
nges:  

trial synthe
mits for meta
Achieving lim
he use of 
years due to
 co-polymer
ng (Figure 1

functionalized 
hemistry, robu

 (Figure 2).
st.  As such,
ing of metal

. 

  
istry,  
 

sis 
al 

mits 

o 
rs 
1).  

ust 

  
 
 

 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

S N

NN

SH

SH

Br
+

B(OH)2

OMe

PdCl2(PPh3)2

Aq. Na2CO3, Toluene
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Figure 2.  Suzuki reaction of 4-Br-Benzyl alcohol with 3-Methoxyphenylboronic acid.  A ‘before and after’ Pd 
scavenging approach. 5 equiv of scavenging resin reduced initial Pd contamination from extracted product of 
Suzuki Reaction, almost 200-fold at RT (99.4% scavenging).  In reaction, (resin bound) MP-TMT was optimal in 
metal scavenging. 
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Figure 3. UV-VIS/ ICP correlation and model studies  

 
Geometry of the Fixed Bed in Metal Scavenging 
A long-thin fixed bed (Table 1, Entries 1, 4 and 7) has a smaller surface area/height ratio, than 
shorter-wider beds (such as Entries 3, 6, 9) and this affected the scavenging.  When 
scavengers:Pd affinity is weak, fixed bed geometry is important, (longer columns enhance 
scavenging).  However, the flow rate, backpressure and physical size of the bed must also be 
practical.  When a strong scavenger is used (Table 1, Entries 1-3 and 7-9), bed length is less 
significant, large SA/H beds are as efficient as longer thinner beds.  Packing efficiency is also a 
variable (Table 1, Entries 3 and 9). Thus choice of scavenger can be critical. Ease of Pd 
scavenging depends on the catalyst used, i.e. scavenging Pd from Pd(OAc)2 was relatively efficient 
(easy) in all cases.  

UV-ICP Correlation :   
We developed an in-house UV-based screen, which allowed correlation of UV-Vis directly with ICP 
(+/- 2ppm) for standard catalytic solutions (Figure 3).  



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Entry SPE 
Cartridge 
size  

Scavenger Bed 
ID 
(mm2) 

Bed 
H 
(mm) 

Bed 
SA/H  
ratio 

% Pd scavenged from 3000ppm 
starting solution of catalyst 

Pd(OAc)2 Pd(PPh3)4 Pd(Cl)2(PPh3)2

1 3mL MP-TMT 8.9 17.8  3.5 72.5  51.7  57.8  
2 6mL MP-TMT 12.6 8.5 14.7 12.1  39.3  16.1  
3 12mL MP-TMT 15.6 5.8 32.9 0.0  39.1  4.1  
4  3mL Si-SH 8.9 13.3 4.6 99.9  65.3  31.0  
5  6mL Si-SH 12.6 6.7 18.6 99.2  64.4  31.0  
6  12mL Si-SH 15.6 4.4 43.1 95.6  61.8  28.9  
7  3mL Si-TMT 8.9 13.0 4.7 99.8  70.6  77.2  
8  6mL Si-TMT 12.6 6.5 19.2 99.2  68.1  69.0  
9  12mL Si-TMT 15.6 3.8 50.4 99.2  68.0  51.4  
 
Table 1.  The effect of the fixed bed on Metal Scavenging.  A scavenging Pd from a range of different Pd 
catalysts, using a variety of resin and silica scavengers, packed into 3 different fixed bed configurations, was 
undertaken.  

 
Optimized Scavenging 
To demonstrate implications of Table 1, a one-pass experiment was performed using a 1000ppm 
std solution of Pd(dppf)2Cl2 (Figure 4).  Catalyst was passed through 500mg fixed beds of each 
metal scavenger in SPE cartridges.  While Si-Thiol faired well, removing 462ppm Pd from solution 
(representing a 69eq excess), TMT ligands were more effective.  The resin-based TMT reduced Pd 
from 1000ppm to av16ppm (98.4% with a 32 equiv. excess of scavenger). However, Si-TMT 
facilitated more effective scavenging, reducing Pd in solution from 1000ppm to 4.2 (99.6% Pd 
removal, from a 16 equiv. excess of scavenger).  Compared to batch experiments, these 
equivalencies are high, however the contact (residence) time was only a few seconds.  When 
residence time is high (i.e. batch reactions), equivalency can be reduced to 3-5, or 25-50 wt% wrt 
product, maintaining similar overall scavenging efficiency (99.4%) (Figure 2).   
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Conclusion 
Si-Thiol, Si-TMT and MP-TMT were evaluated for metal scavenging.  We observed effects based on 
polymer type, ligand, and Pd catalyst hosting.  Bed geometry was investigated and also effect of 
increasing the scavenging difficulty via complicated substrates.  This has allowed construction of a 
framework of guidelines for expedited  metal scavenging 
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