
Technical Note 508

PS-Triphenylphosphine

Resin-Bound Phosphine

Chemical Name: Diphenylphosphino-polystyrene

Resin Type: 1% Cross-linked poly(styrene-co-divinylbenzene)

Loading: Typical loading 2.2 mmol/g (minimum loading 1.8 mmol/g) based on uptake of benzyl bromide

Bead Size: 75–150 microns, 100–200 mesh (95% within)

Application: Chlorination of acids and alcohols, Wittig and Mitsunobu reactions, scavenging of alkyl halides

Typical Chlorination Conditions: 0.5 equiv of acid or alcohol in CCl₄, 2 h, 80 °C

Typical Mitsunobu Reaction Conditions: 1.0 equiv of alcohol, 1.0 equiv of phenol, 1.0 equiv of resin, and 1.0 equiv of diethylazodicarboxylate (DEAD) at room temperature for 16 h

TypicI Wittig Reaction Conditions: 2.0 equiv of ylide resin, 8.0 equiv of sodium bis(dimethylsilyl)amide/tetrahydrofuran (NaHMDS/THF), resin washed with THF, followed by 1.0 equiv of carbonyl compound in THF at room temperature for 16 h

Typical Alkyl Halide Scavenging Conditions: 3.0 equiv of resin, DMF, 10 mL/g resin, 20 °C, 16 h

Compatible Solvents: DMF (3.5 mL/g), THF (4.1 mL/g), DCM (4.9 mL/g), benzene (3.1 mL/g) and other solvents that swell gel-type polystyrene

PS-Triphenylphosphine is a phosphinated polystyrene resin that is a resin-bound equivalent of triphenylphosphine. The capacity of PS-Triphenylphosphine is determined by the quantitation of benzyl bromide uptake in DMF (GC, internal standard method). This resin can readily convert acids or alcohols to the corresponding acyl or alkyl chlorides in CCl_4 (**Scheme 1**). ¹⁻³ The conditions are mild and products are formed in high purity (**Table 1**).

Scheme 1. Chlorination using PS-Triphenylphosphine

ROH or	PS-Triphenylphosphine (2 equiv)		RCI or
RCOOH	CCl ₄ , 80 °C		RCOCI

PART NUMBER	QUANTITY
800378	10 g
800379	25 g
800380	100 g
800381	1000 g

PS-Triphenylphosphine may also be utilized for Mitsunobu reactions to prepare aryl ethers in high purity (Scheme 2, Table 2). Removal of hydrazide byproducts is readily accomplished using a silica SPE cartridge. PS-Triphenylphosphine resin can be utilized to synthesize olefins via the Wittig reaction (Scheme 3, Table 3). For the resin gave superior results for Wittig reactions when compared with another resin-bound triphenylphosphine (2% cross-linked), in which case starting materials were recovered. PS-Triphenylphosphine may also be used as a scavenger for alkyl halides (Table 4).

Scheme 2. Mitsunobu Reaction using PS-Triphenylphosphine

REPRESENTATIVE PROCEDURE

Chlorination (Entry 1, Table 1):

A 2.2 mL solution of benzyl alcohol (15.4 mg, 0.14 mmol) in CCl_4 was added under nitrogen to a reaction vessel containing 214.2 mg of PS-Triphenylphosphine resin (1.35 mmol/g, 0.29 mmol). The mixture was stirred and heated under reflux for 2 h at 80 °C. The product was filtered and the resin was washed with DCM (3 x 3 mL). GC quantitation (using biphenyl as internal standard) showed that benzyl chloride was produced from the resin in 100% yield and 98% purity.

REPRESENTATIVE PROCEDURE

Mitsunobu Reactions (Entry 3, Table 2):

To a reaction vessel containing 1 mL DCM was added a solution of p-methoxyphenol (0.35 mL, 0.175 mmol) in 2 mL DCM , a solution of benzyl alcohol (0.35 mL, 0.175 mmol) in 2 mL DCM and 130 mg of PS-Triphenylphosphine resin (1.35 mmol/g, 0.175 mmol). The reaction mixture was stirred for 0.5 h at room temperature and cooled to 0 °C. A solution of DEAD (0.35 mL, 0.175 mmol) in 2 mL DCM was added to the reaction mixture at 0 °C and then stirred for 16 h at room temperature. The reaction mixture was washed with aq. KOH solution (5%, 4 mL), followed by 5 % aq. HCl (4 mL). The DCM extract was filtered into a vial and the resin was washed further with DCM (2 x 4 mL). The solvent was concentrated and the product was purified by filtration through a SPE cartridge (6 mL/2 g ISOLUTE® Silica Gel, part number 460-0200-C) with 10:1 of hexane/ether. The solvent was concentrated to provide p-methoxyphenyl benzyl ether in 88% yield (GC purity 96%). 1 H NMR (CDCl $_3$, 300 MHz): 1 B 7.45-7.30 (m, 5H,Ar-H), 6.95-6.83 (m, 4H,Ar-H), 5.03 (s, 2H, CH $_2$), 3.78 (s, 3H, CH $_3$) ppm; 1 C NMR (CDCl $_3$, 75 MHz): d 154.01, 152.98, 128.49, 127.82, 127.41, 115.88, 114.65, 70.73, 55.68 ppm.

Table 1. Chlorination of Acids and Alcohols Using PS-Triphenylphosphine Resin

Entry	ROH or RCOOH	RCI or RCOCI	Yield	GC Purity ^a
1	ОН	0	100%	98%
2	OH	CI	98%	95%
3	ОН	CI	100%	100%
4	CIOH	CI	73%	98%

^aGC analysis: HP-5 phenylmethylsilicone column 100–280 °C, 15 °C/min, 1 min hold

 $Table\,2.\,Mitsunobu\,Reaction\,Using\,PS-Triphenylphosphine\,Resin$

Entry	Alcohol	Phenol	Aryl ether	% Yield (isolated)	GC Purity ^a
1	ОН	O ₂ N OH	O ₂ N	79	98%
2	ОН	OH	Br	80	92%
3	ОН	MeO	MeO	88	98%
4	ОН	O ₂ N OH	02N	62	100%
5	ОН	Br	Br	68	96%
6	ОН	OH MeO	MeO	75	100%

 $^{^{\}rm a}$ GC analysis: HP-5 phenylmethylsilicone column 100–280 °C, 15 °C/min, 10 min hold

 $Table \ 3. \ Wittig \ Reaction \ Using \ PS-Triphenyl phosphine \ Resin$

Entry	Phosphonium Resin	Carbonyl Compound	Olefin	% Isolated Yield (cis:trans) ^a	GC Purity ^b
1	Ph er Ph Ph	O ₂ N CHO	O ₂ N Ph	98% (3:1)	96%
2	Ph © Br Ph Ph Ph	СНО	Ph	81% (5:1)	95%
3	Ph Br Ph Ph	O H	Ph	96% (1:1)	81%
4	Ph Br Ph Ph	OMe	Me	88% (2:1)	87%
5	Ph O Ph C ₃ H ₇	MeO	MeO	94% (2:3)	91%
6	Ph O O O O O O O O O	MeO H	MeO OMe	87% (1:3)	98%
7	Ph Ph C ₃ H ₇	OMe	Me	88% (2:1)	94%
8	Ph I O Ph C ₃ H ₇		Ph	82%	99%

^a Ratio determined by ¹H NMR analysis. ^bGC analysis: HP-5 phenylmethylsilicone column 100–250 °C, 15 °C/min, 10 min hold

Table 4. Comparative Scavenging of Alkyl Halides with PS-Tripheylphosphine Resin (3.0 equiv)

Entry	Material Scavenged	Equiv	Solvent	Temp °C	% Scavenged ^a	Time (h)
1	Ethyl bromoacetate	1.0	DMF	20	100	6h
2	Benzyl bromide	1.0	DMF	20	100	16 h
3	Cinnamyl chloride	1.0	THF:DMF	50	68	10 h
4	Cinnamyl bromide	1.0	DMF	20	100	16 h

^aGC analysis: HP-5 phenylmethylsilicone column 100–250 °C, 15 °C/min, 10 min hold

Scheme 3. Wittig Reaction Using PS-Triphenylphosphine Resin

REPRESENTATIVE PROCEDURE

Wittig Reactions (Entry 5, Table 3):

1-Iodobutane (0.53 mL, 8.52 mmol) was added to a suspension of PS-Triphenylphosphine (1.42 mmol/g, 3.0 g) in 30 mL DMF and the reaction was stirred for 48 h at 65 $^{\circ}$ C. The phosphonium resin was washed with DMF (4 x 40 mL), toluene (4 x 40 mL), DCM (4 x 40 mL), and diethyl ether (4 x 40 mL) and dried *in vacuo* for 12 h. The dried phosphonium resin (0.2 g, 0.2 mmol) was added to a reaction vessel, followed by addition of 2 mL THF. To the suspension of phosphonium resin was added a solution of sodium bis(dimethylsilyl)amide (2.0 M NaHMDS in THF, 0.4 mL, 0.8 mmol) at room temperature and the reaction mixture was stirred for 1 h. The ylide resin was washed with THF (5 x 4 mL) to remove excess base. To the suspension of ylide resin in 2 mL anhydrous THF was added a solution of *p*-methoxy-benzaldehyde (0.2 mL, 0.1 mmol) in 2 mL THF and stirred for 16 h. The reaction mixture was diluted with 2 mL hexane and directly applied to a silica SPE cartridge (6 mL/1 g silica gel, ISOLUTE SI, part number 460-0100-C), followed by washing twice with 4 mL of 2:1 hexane/ether. The solvent was concentrated to provide the olefin in 94% yield (GC purity 91%).

REPRESENTATIVE PROCEDURE

Alkyl Halide Scavenging (Entry 2, Table 4):

PS-Triphenylphosphine (3.0 equiv) was added to a solution of benzyl bromide (1.0 equiv) in DMF ($10\,\text{mL/g}$ resin added) and the reaction was stirred at room temperature for 5–16 h. Results by GC analysis indicate > 80% scavenging after 6 h and 100% scavenging after 16 h.

REFERENCES

- 1. Relles, H. M.; Schluenz, R.W. J. Am. Chem. Soc. 1974, 96, 6469.
- 2. Regen, S. L.; Lee, D. P. J. Org. Chem. 1975, 40, 1669.
- 3. Landi, J. J. Jr.; Brinkman, H. R. Synthesis 1992, 1093.
- 4. Tunoori, A. R.; Dutta, D.; Georg, G. I. Tetrahedron Lett. 1998, 39, 8751.
- 5. Bernard, M.; Ford, W.T. J. Org. Chem. 1983, 48, 326.
- 6. Bolli, M. H.; Ley, S.V. J. Chem. Soc., Perkin Trans. 1. 1998, 15, 2243.

ISOLUTE® is a regisered tradmark of Argonaut Technologies, now a Biotage company ©2003 Argonaut Technologies, now a Biotage company All rights reserved. 041-702

United Staes and Canada T: + 1 434 979 2319 Toll-Free: +1 800 446 4752 ordermailbox@biotage.com

United Kingdom, EIRE Biotage T: + 44 1443 811811 eurosales@eu.biotage.com Sweden Biotage T: + 46 18 56 59 00 order@eu.biotage.com

Japan Biotage T: + 81 422 281233 order@biotage.co.jp